Stationary stationery
profile entries links :)
recent entries
  • Littlething
  • If you ever wondered where I've been the last 6 mo...
  • (Almost) apt.
  • (Nothing's) Better than Ezra
  • Just for tonight
  • The world's stupidest tourist
  • We can live like this
  • The Future Freaks Me Out
  • Sometimes, all you need is one
  • Begin


  • archives
  • February 2006
  • March 2006
  • April 2006
  • May 2006
  • June 2006
  • July 2006
  • August 2006
  • September 2006
  • October 2006
  • November 2006
  • December 2006
  • January 2007
  • March 2007
  • April 2007
  • May 2007
  • June 2007
  • February 2008
  • March 2008
  • April 2008
  • May 2008
  • June 2008
  • July 2008
  • August 2008
  • November 2008
  • January 2009
  • February 2009
  • March 2009
  • April 2009
  • May 2009
  • June 2009
  • July 2009
  • August 2009
  • September 2009
  • October 2009
  • November 2009
  • January 2010
  • February 2010
  • March 2010
  • May 2010
  • July 2010
  • August 2010
  • January 2011
  • February 2011


  • credits
    layout: lyricaltragedy
    inspiration: reversescollide

    Weblog Commenting and Trackback by HaloScan.com
    31 July 2008 @ 12:35 AM

    // #19. Hint Help

    Benjamin C. B. Tilghman, of Philadelphia, once went into the lighthouse at Cape May, and, observing that the window glass was translucent rather than transparent, asked the keeper why he put ground glass in the windows. "We do not," said the keeper. "We put in the clear glass, and the wind blows the sand against it and roughens the outer surface like ground glass." The answer was to him like the falling apple to Newton. He put on his thinking cap and went out. It was better than the cap of Fortunatus to him. He thought, "If nature does this, why cannot I make a fiercer blast, let sand trickle into it, and so hurl a million little hammers at the glass, and grind it more swiftly than we do on stones with a stream of wet sand added?"

    He tried jets of steam and of air with sand, and found that he could roughen a pane of glass almost instantly. By coating a part of the glass with hot beeswax, applied with a brush, through a stencil, or covering it with paper cut into any desired figures, he could engrave the most delicate and intricate patterns as readily as if plain. Glass is often made all white, except a very thin coating of brilliant colored glass on one side. This he could cut through, leaving letters of brilliant color and the general surface white, or vice versa.

    Seal cutting is a very delicate and difficult art, old as the Pharaohs. Protect the surface that is to be left, and the sand blast will cut out the required design neatly and swiftly.

    There is no known substance, not even corundum, hard enough to resist the swift impact of myriads of little stones.

    It will cut more granite into shape in an hour than a man can in a day.

    Surely no one will be sorry to learn that General Tilghman sold part of his patents, taken out in October, 1870, for $400,000, and receives the untold benefits of the rest to this day. So much for thinking.

    Nature gives thousands of hints. Some can take them; some can only take the other thing. The hints are greatly preferred by nature and man.



    23 July 2008 @ 1:40 AM

    // #18. Natural Affection of Metal and Gas

    A man was awoken one night in a strange house by a noise he could not understand. He wanted a light, and wanted it very much, but he had no matches that would take fire by the heat of friction. He knew of many other ways of starting a fire. If water gets to the cargo of lime in a vessel it sets the ship on fire. It is of no use to try to put it out by water, for it only makes more heat. He knew that dried alum and sugar suitably mixed would burst into flame if exposed to the air; that nitric acid and oil of turpentine would take fire if mixed; that flint struck by steel would start fire enough to explode a powder magazine; and that Elijah called down from Heaven a kind of fire that burned twelve "barrels" of water as easily as ordinary water puts out ordinary fire. But he had none of these ways of lighting his candle at hand - not even the last.

    So he took a bit of potassium metal, bright as silver, out of a bottle of naphtha, put it in the candle wick, touched it with a bit of dripping ice, and so lighted his candle.

    The potassium was so avaricious of oxygen that it decomposed the water to get it. Indeed, it was a case of mutual affection. The oxygen preferred the company of potassium to that of the hydrogen in the water, and went to it even at the risk of being burned.

    I was so interested in seeing a bit of silver-like metal and water take fire as they touched that I forgot all about the occasion of the noise.



    22 July 2008 @ 10:07 PM

    // #17. Natural Affection between Metal and Liquid

    A little boy had a silver mug that he prized very highly, as it was the gift of his grandfather. The boy was not born with a silver spoon in his mouth, but, what was much better, he had a mug often filled with what he needed.

    One day he dipped it into a glass jar of what seemed to him water, and letting go of it saw it go to the bottom. He went to find his father to fish it out for him. When he came back his heavy solid mug looked as if it were made of the skeleton leaves of the forest when the green chlorophyll has decayed away in the winter and left only the gauzy veins and veinlets through which the leaves were made. Soon even this fretwork was gone, and there was no sign of it to be seen. The liquid had eaten or drank the solid metal up, particle by particle. The liquid was nitric acid.

    The poor little boy had often seen salt, and especially sugar, absorbed in water, but never his precious solid silver mug, and the bright tears rolled down his cheeks freely.

    But his father thought of two things: First, that the blue tint told him that the jeweler had sold for silver to the grandfather a mug that was part copper; and secondly, that he would put some common salt into the nitric acid - which it liked so much better than silver that it dropped the silver, just as a boy might drop bread when he sought to fill his hands with cake.

    So the father recovered the invisible silver and made it into a precious mug again.



    20 July 2008 @ 9:37 PM

    // #16. Natural Affection of Metals

    "Sacra fames auri." The hunger for gold, which in men is called accursed, in metals is justly called sacred.

    In all the water of the sea there is gold - about 400 tons in a cubic mile - in very much of the soil, some in all Philadelphia clay, in the Pactolian sands of every river where Midas has bathed, and in many rocks of the earth. But it is so fine and so mixed with other substances that in many cases it cannot be seen. Look at the ore from a mine that is giving its owners millions of dollars. Not a speck of gold can be seen. How can it be secured? Set a trap for it. Put down something that has an affinity - voracious appetite, unslakable thirst, metallic affection - for gold, and they will come together.

    We have heard of potable gold - "potabile aurum." There are metals to which all gold is drinkable. Mercury is one of them. Cut transverse channels, or nail little cleats across a wooden chute for carrying water. Put mercury in the grooves or before the cleats, and shovel auriferous gravel and sand into the rushing water. The mercury will bibulously drink into itself all the fine invisible gold, while the unaffectionate sand goes on, bereaved of its wealth.

    Put gold-bearing quartz under an upright log shod with iron. Lift and drop the log a few hundred times on the rock, until it is crushed so fine that it flows over the edge of the trough with constantly going water, and an amalgam of mercury spread over the inclined way down which the endusted water flows will drink up all the gold by force of natural affection therefor.

    Neither can the gold be seen in the mercury. But it is there. Squeeze the mercury through chamois skin. An amalgam, mostly gold, refuses to go through. Or apply heat. The mercury flies away as vapor and the gold remains.

    If thou seekest for wisdom as for silver, and searchest for her as for hid treasure, thou shalt find.



    19 July 2008 @ 12:19 AM

    // #15. Gas Help

    This refers to more than stump speech-making. The old Romans drove through solid rock numerous tunnels similar to the one for draining Lago de Celano, fifty miles east of Rome. This one was three and a half miles long, through solid rock, and every chip cost a blow of a human arm to dislodge it. Of course the process was very slow.

    We do works vastly greater. We drive tunnels three times as long for double-track railways through rock that is held down by an Alp. We use common air to drill the holes and a thin gas to break the rock. The Mont Cenis tunnel required the removal of 900,000 cubic yards of rock. Near Dover, England, 1,000,000,000 tons of cliff were torn down and scattered over fifteen acres in an instant. How was it done? By gas.

    There are a dozen kinds of solids which can be handled - some of them frozen, thawed, soaked in water, with impunity - but let a spark of fire touch them and they break into vast volumes of uncontrollable gas that will rend the heart out of a mountain in order to expand.

    Gunpowder was first used in 1350; so the old Romans knew nothing of its power. They flung javelins a few rods by the strength of the arm; we throw great iron shells, starting with an initial velocity of fifteen hundred feet a second and going ten miles. The air pressure against the front of a fifteen-inch shell going at that speed is 2,865 pounds. That ton and a half of resistance of gas in front must be much more than overcome by gas behind.

    But the least use of explosives is in war; not over ten per cent is so used. The Mont Cenis tunnel took enough for 200,000,000 musket cartridges. As much as 2,000 kegs have been fired at once in California to loosen up gravel for mining, and 23 tons were exploded at once under Hell Gate, at New York.

    How strong is this gas? As strong as you please. Steam is sometimes worked at a pressure of 400 pounds to the inch, but not usually over 100 pounds. It would be no use to turn steam into a hole drilled in rock. The ordinary pressure of exploded gas is 80,000 pounds to the square inch. It can be made many times more forceful. It works as well in water, under the sea, or makes earthquakes in oil wells 2,000 feet deep, as under mountains.

    The wildest imagination of Scheherezade never dreamed in Arabian Nights of genii that had a tithe of the power of these real forces. Her genii shut up in bottles had to wait centuries for some fisherman to let them out.



    18 July 2008 @ 10:34 PM

    // #14. One Plant Help

    A thousand acres of land on Cape Cod were once blown away. This wind excavation was ten feet deep. It was not an extraordinary wind, but extraordinary land. It was made of rock ground up into fine sand by the waves on the shore.

    In all the deserts of the world the wind blows the itinerant sand on its far journeys. If the wind is moderate it heaps the sand up into little hills, some of them six hundred feet high, around any obstruction, and then blows the sand up the slanting face of the hill and over the top, where it falls out of the wind on the leeward side. In this way the hill is always traveling. In North Carolina hills start inland, and travel right on, burying a house or farm if it be in the way, but resurrecting it again on the other side as the hill goes on. Anyone may see these hills at the south end of Lake Michigan, as he approaches Chicago, west of San Francisco, all along up the Columbia River - the sand having come on the wings of the wind from the coast.

    But to see the whole visible world on a march one needs to go to a really large desert. The Pyramids and the Sphinx have been partly buried, and parts of the valley of the Nile threatened, by hordes of sand hills marching in from the desert; cities have been buried and harbors filled up. Many of the harbors of the ancient civilizations are mere miasmatic marshes now. This is partly in consequence of the silt brought in by the rivers; but where the rivers do not flow in it is because the sand blows in along the shore. Harbors are especially endangered when their protection from the waves consists of a bank of sand, as on Cape Cod and the Sandy Hook below the Narrows of the harbor of New York.

    How can man combat part of the continent on the move, driven by the ceaseless powers of the air? By a humble plant or two. The movement of the sand hills that threaten to destroy the marvelous beauty of the grounds of the Hotel del Monte at Monterey is stopped by planting dwarf pines. The sand dunes that prevent much of Holland from being reconquered by the sea are protected with great care by willows, etc., and the coast sands of parts of eastern France have been sown with sea pine and broom.

    The tract of a thousand acres on Cape Cod had been protected by humble beach grass. Some careless herder let the cows eat it in places, and away went part of a township. It is now a punishable crime on Cape Cod to destroy beach grass.



    17 July 2008 @ 11:32 AM

    // #13. The Help of Inertia

    Since the time of David many boys have swung pebbles by a string, or sling, and felt the pull of what we call a centrifugal (center-fleeing) force. David utilized it to one good purpose. Goliath was greatly surprised; such a thing never entered his head before. Whether a stone or an idea enters one's head depends on the kind of head he has.

    We utilize this force in many ways now. Some boys swing a pail of milk over their heads, and if swung fast enough the centrifugal force overcomes the force of gravitation, and the milk does not fall. That is not utilizing the force. It often terrorizes the careful mother, anxious for the safety of the milk.

    But in the arts of practical life we do utilize this force, which is only inertia.

    Once it took a long time for molasses to drain out of a hogshead of damp sugar. Now it is put into a great tub, with holes in the side, which is made to revolve rapidly, and the molasses flies out. In the best laundries clothes are not wrung out, to the great damage of tender fabrics, but are put into such a tub and whirled nearly dry. So fifty yards of woolen cloth just out of the dye vat - who could wring it? It is coiled in a tub called a wizard, and whirled.

    Muddy water is put through a process called clarification. It is the same, except that there are no holes in the vessel. The heavier particles of dirt, that would settle in time, take the outside, leaving perfectly clean water in the middle. A perpendicular perforated pipe, with a faucet below, drains off all the clear water and leaves all the mud. Milk is brought in from the milking and put into a separator; whirl it, and the heavier milk takes the outside of the whirling mass, and the lighter cream can be drawn off from the middle. It is far more perfectly separated than by any skimming.

    A rotary snowplow slices off two feet of a ten-foot drift at each revolution, and by centrifugal force flings it out of the cutting with a speed that a hundred navvies or dagos cannot equal.



    16 July 2008 @ 1:31 AM

    // #12. The Fairy Works A Pump Handle

    The Slave of the Ring could take Aladdin into a cave of wealth, and by speaking the words, "Open Sesame," Ali Baba was admitted into the cave that held the treasures of the forty thieves. But that is very little. I have just come from a cave in Virginia City, Nev., from which men took $120,000,000.

    In following the veins of silver the miners went down 3,500 feet - more than three fifths of a mile. There it was fearfully hot, but the main trouble was water. They had dug a deep, deep well. How could they get the water out? Pumps were of no use. A column of water one foot square of that height weighs 218,242 pounds. Who could work the other end of the pump handle?

    They thought of evaporating the water and sending it up as steam. But it was found that it would take an incredible amount of coal. They thought of separating it into oxygen and hydrogen, and then its own lightness would carry it up very quickly. But they had no power that would resolve even quarts into their ultimate elements, where tons would be required.

    So they asked gravitation to help them. It readily offered to do so. It could not let go its hold of the water in the mine, nor anywhere else, for fear everything would go to pieces, but it offered to overcome force with greater force. So it sent the men twenty miles away in the mountains to dig a ditch all the way to the mine, and then gravitation brought water to a reservoir four hundred feet above the mouth of the mine. Now a column of this water one foot square can be taken from this higher reservoir down to the bottom of the mine and weigh 25,000 pounds more than a like column that comes from the bottom to the top. This extra 25,000 pounds is an extra force available to lift itself and the other water out of the deep well, and they turn the greater force into a pump and work it in the cylinder as if it were steam. It lifts not only the water that works the pump, but the other water also out of the mine by gravitation. So man gets the water out by pouring more water in.



    14 July 2008 @ 9:18 PM

    // #11. The Fairy Draws Greater Loads

    Pittsburg has 5,000,000 tons of coal every year that it wishes to send South, much of it as far as New Orleans - 2,050 miles. What force is sufficient for moving such great mountains so far? Any boy may find it.

    Tie a stone to the end of a string, whirl it around the finger and feel it pull. How much is the pull? That depends on the weight of the stone, the length of the string, and the swiftness of the whirl. In the case of David's sling it pulled away hard enough to crash into the head of Goliath. Suppose the stone to be as big as the earth (8,000 miles in diameter), the length of the string to be its distance from the sun (92,500,000 miles), and the swiftness of flight the speed of the earth in its orbit (1,000 miles a minute). The pull represents the power of gravitation that holds the earth to the sun.

    If we use steel wires instead of gravitation for this purpose, each strong enough to support half a score of people (1,500 pounds), how many would it take? We would need to distribute them over the whole earth: from pole to pole, from side to side, over all the land and sea. Then they would need to be so near together that a mouse could not run around among them.

    Here is a measureless power. Can it be gotten to take Pittsburgh coal to New Orleans? Certainly; it was made to serve man. So the coal is put on great flatboats, 36 x 176 feet, a thousand tons to a boat, and gravitation takes the mighty burden down the long toboggan slide of the Ohio and Mississippi Rivers to the journey's end. How easy!


    [Illustration: The Head of the Toboggan Slide.]

    One load sent down was 43,000 tons. The flatboats were lashed together as one solid boat covering six and one half acres, more space than a whole block of houses in a city, with one little steamboat to steer. There is always plenty of power; just belt on for anything you want done. This is only one thing that gravitation does for man on these rivers. And there are many rivers. They serve the savage on his log and the scientist in his palace steamer with equal readiness.



    13 July 2008 @ 10:17 PM

    // #10. More Gravitation

    At Hutchinson, Kan., there are great beds of solid rock salt four hundred feet below the surface. Men want to get and use two thousand barrels a day. How shall they get it to the top of the ground? They might dig a great well - or, as the miners say, sink a shaft - pump out the water, go down and blast out the salt, and laboriously haul it up in defiance of gravitation. No; that is too hard. Better ask this strong gravitation to bring it up.

    But does it work down and up? Did any one ever know of gravitation raising anything? Oh yes, many things. A balloon may weigh as much as a ton, but when inflated it weighs less than so much air; so the heavier air flows down under and shoulders it up. When a heavy weight and a light one are hung over a pulley, the light one goes up because gravity acts more on the other. Water poured down a long tube will rise if the tube is bent up into a shorter arm.

    Exactly. So we bore a four-inch hole down to the salt and put in an iron tube.

    We do not care about the water. It is no bother. Then inside of this tube we put a two-inch tube that is a few feet higher. Now pour water down the small longer tube. It saturates itself with salt, and comes flowing over the top of the shorter tube as easily as water runs down hill. Multiply the wells, dry out the water, and you have your two thousand barrels of salt lifted every day - just as easy as thinking!

    We want a steady, unswerving force that will pull our clock hands with an exact motion day and night, year in and year out. We hang up a string, and ask gravitation to take hold and pull. We put on some lead or brass for a handle, to take hold of. It takes hold and pulls, unweariedly, unvaryingly, and ceaselessly.

    It turns single water-wheels with a power of more than twelve hundred horses.

    It holds down houses, so that they are not blown away. It was made to serve man, and it works without a grumble.

    Thus the higher force in nature always prevails over the lower, and the greater amount over the less amount of the same force. What is the highest force?



    12 July 2008 @ 11:23 PM

    // #9. The Fairy Gravitation

    The Germans imagine that they have fairy kobolds, sprites, and gnomes which play under ground and haunt mines. I know a real one. I will give you his name. It is called "Gravitation." The name does not sound any more fairylike than a sledge hammer, but its nature and work are as fairylike as a spider's web. I will give samples of his helpful work for man.

    In the mountains about Saltzburg, south of Munich, are great thick beds of solid salt. How can they get it down to the cities where it is needed? Instead of digging it out, and packing it on the backs of mules for forty miles, they turn in a stream of water and make a little lake which absorbs very much salt - all it can carry. Then they lay a pipe, like a fairy railroad, and gravitation carries the salt water gently and swiftly forty miles, to where the railroads can take it everywhere. It goes so easily! There is no railroad to build, no car to haul back, only to stand still and see Gravitation do the work.

    How do they get the salt and water apart? Oh, just as easily. They ask the wind to help them. They cut brush about four feet long, and pile it up twenty feet high and as long as they please. Then a pipe with holes in it is laid along the top, the water trickles down all over the loose brush, and the thirsty wind blows through and drinks out most of the water. They might let on the water so slowly that all of it would be drunk out by the wind, leaving the solid salt on the bushes. But they do not want it there. So they turn on so much water that the thirsty wind can drink only the most of it, and the rest drops down into great pans, needing only a little evaporation by boiling to become beautiful salt again, white as the snows of December.

    There are other minerals besides salt in the beds in the mountains, and, being soluble in water, they also come down the tiny railroad with musical laughter. How can we separate them, so that the salt shall be pure for our tables?

    The other minerals are less avaricious of water than salt, so they are precipitated, or become solid, sooner than salt does. Hence with nice care the other minerals can be left solid on the bushes, while the salt brine falls off. Afterwards pure water can be turned on and these other minerals can be washed off in a solution of their own. No fairies could work better than those of solution and crystallization.



    11 July 2008 @ 12:20 AM

    // #8. Help from Insensible Seas

    Suppose one has been at sea a month (haha Harry on reservice). He has tacked to every point of the compass, been driven by gales, becalmed in doldrums. At length Euroclydon leaps on him, and he lets her drive. And when for many days and nights neither sun nor stars appear, how can he tell where he is, which way he drives, where the land lies?

    There is an insensible ocean. No sense detects its presence. It has gulf streams that flow through us, storms whose waves engulf us, but we feel them not. There are various intensities of its power, the north end of the world not having half as much as the south. There are two places in the north half of the world that have greater intensity than the rest, and only one in the south. It looks as if there were unsoundable depths in some places and shoals in others.

    The currents do not flow in exactly the same direction all the time, but their variations are within definite limits.

    How shall we detect these steady currents when wind and waves are in tumultuous confusion? They are always present. No winds blow them aside, no waves drench their subtle fire, no mountains make them swerve. But how shall we find them?

    Float a bit of magnetic ore in a pail of water, or suspend a bit of magnetized steel by a thread, and these currents make the ore or needle point north and south. Now let waves buffet either side, typhoons roar, and maelstroms whirl; we have, out of the invisible, insensible sea of magnetic influence, a sure and steady guide. Now we can sail out of sight of headlands. We have in the darkness and light, in calm and storm, an unswerving guide. Now Columbus can steer for any new world.

    Does not this seem like a spiritual force? Lodestone can impart its qualities to hard steel without the impairment of its own power. There is a giving that does not impoverish, and a withholding that does not enrich.

    Wherever there is need there is supply. The proper search with appropriate faculties will find it. There are yet more things in heaven and earth than are dreamed of in our philosophy.



    10 July 2008 @ 11:01 PM

    // #7. Star Help

    "We for whose sake all Nature stands,
    And stars their courses move."


    Do the stars, that are so far away and seem so small, send us any help? Assuredly. Nothing exists for itself. All is for man.

    Magnetism tells the sailor which way he is going. Stars not only do this, when visible, but they also tell just where on the round globe he is. A glance into their bright eyes, from a rolling deck, by an uneducated sailor, aided by the tables of accomplished scholars, tells him exactly where he is - in mid Atlantic, Pacific, Indian, Arctic, or Antarctic Ocean, or at the mouth of the harbor he has sought for months. We lift up our eyes higher than the hills. Help comes from the skies.

    This help was started long since, with providential foresight and care. Is he steering by the North Star? A ray of guidance was sent from that lighthouse in the sky half a century before his need, that it might arrive just at the critical time. It has been ever since on its way.

    The stars give us, on land and sea, all our reliable standards of time. There is no other source. They are reliable to the hundredth part of a second.

    The Italian physicians, in their ignorance of the origin of a disease, named it the influenza, because they imagined that it came from the influence of the stars. No! There is nothing malign in the sweet influences of the Pleiades.

    The stars are of special use as a mental gymnasium. On their lofty bars and trapezes the mind can swing itself higher and farther than on any other material thing. Infinity and omnipotence are factors in their problems. They also fill the soul of the rapt beholder with adoring wonder. They are the greatest symbols of the unweariableness of the power and of the minuteness of the knowledge of God. He calleth all their millions by name, and for the greatness of His power not one faileth to come.

    Number the stars of a clear Eastern sky, if you are able. So multitudinous and enduring shall the influence of one good man be.



    09 July 2008 @ 10:12 AM

    // #6. More Moon Help

    Years ago, before there were any railroads, New York city had thousands of tons of merchandise it wished to send out West. Teams were few and slow, so they asked the moon to help. It was ready; had been waiting thousands of years.

    We shall soon see that it is easy to slide millions of tons of coal down hill, but how could we slide freight up from New York to Albany?

    It is very simple. Lift up the lower end of the river till it shall be down hill all the way to Albany. But who can lift up the end of the river? The moon. It reaches abroad over the ocean and gathers up water from afar, brings it up by Cape Hatteras and in from toward England, pours it in through the Narrows, fills up the great harbor, and sets the great Hudson flowing up toward Albany. Then men put their big boats on the current and slide up the river. Six hours later the moon takes the water out of the harbor and lets other boats slide the other way.

    New York itself has made use of the moon to get rid of its immense amount of garbage and sewage. It would soon breed a pestilence, and the city be like the buried cities of old; but the moon comes to its aid, and carries away and buries all this foul breeder of a pestilence, and washes all the harbor and bay with clean floods of water twice a day. Good moon! It not only lights, but works.

    The tide in New York Harbor rises only about five feet; up in the Bay of Fundy it ramps, rushes, raves, and rises more than fifty feet high.

    In former times men used to put mill wheels into the currents of the tides; when they rushed into little bays and salt ponds they turned the wheels one way; when out, the other.



    08 July 2008 @ 9:11 PM

    // #5. Moon Help

    At Foo-Chow, China, there is a stone bridge, more than a mile long, uniting the two parts of the city. It is not constructed with arches, but piers are built up from the bottom of the river and great granite stringers are laid horizontally from pier to pier. I measured some of these great stone stringers, and found them to be three feet square and forty-five feet long. They weigh over thirty tons each.

    How could they be lifted, handled, and put in place over the water on slender piers? How was it done? There was no Hercules to perform the mighty labor, nor Amphion to lure them to their place with the music of his golden lyre.

    Tradition says that the Chinese, being astute astronomers, got the moon to do the work. It was certainly very shrewd, if they did. Why not use the moon for more than a lantern? Is it not a part of the "all things" over which man was made to have dominion?

    Well, the Chinese engineers brought the great granite blocks to the bridge site on floats, and when the tide lifted the floats and stones they blocked up the stones on the piers and let the floats sink with the outgoing tide. Then they blocked up the stones on the floats again, and as the moon lifted the tides once more they lifted the stones farther toward their place, until at length the work was done for each set of stones.

    Dear, good moon, what a pull you have! You are not merely for the delight of lovers, pleasant as you are for that, but you are ready to do gigantic work.

    No wonder that the Chinese, as they look at the solid and enduring character of that bridge, name it, after the poetic and flowery habit of the country, "The Bridge of Ten Thousand Ages."



    07 July 2008 @ 11:09 PM

    // #4. Old Sun Help

    Holland is a land that is said to draw twenty feet of water. Its surface is below sea level. Since 1440 they have been recovering land from the sea. They have acquired 230,000 acres in all. Fifty years ago they diked off 45,000 acres of an arm of the sea, called Haarlem Meer, that had an average depth of twelve and three quarters feet of water, and proposed to pump it out so as to have that much more fertile land. They wanted to raise 35,000,000 tons of water a month a distance of ten feet, to get through in time. Who could work the handle?

    The sun would evaporate two inches a year, but that was too slow. So they used the old force of the sun, reservoired in former ages. Coal is condensed sunshine, still keeping all the old light and power. By a suitable engine they lifted 112 tons ten feet at every stroke, and in 1848, five years after they began to apply old sun force, 41,675 acres were ready for sale and culture.

    The water that accumulates now, from rain and infiltration, is lifted out by the sun force as exhibited in wind on windmills. They groaningly work while men sleep.

    The Netherlandish engineers are now devising plans to pump out the Zuyder Zee, an area of two thousand square miles. There is plenty of power of every kind for anything, material, mental, spiritual. The problem is the application of it. The thinker is king.

    This is only one instance of numberless applications of old sun force. In this country coal does more work than every man, woman, and child in the whole land. It pumps out deep mines, hoists ore to the surface, speeds a thousand trains, drives great ships, in face of waves and winds, thousands of miles and faster than transcontinental trains. It digs, spins, weaves, saws, planes, grinds, plows, reaps, and does everything it is asked to do. It is a vast reservoir of force, for the accumulation of which thousands of years were required.



    06 July 2008 @ 10:06 PM

    // #3. The Sun's Great Horses

    There was once a man who had thousands of acres of mighty forests in the distant mountains. They were valueless there, but would be exceedingly valuable in the great cities hundreds of miles away, if he could only find any power to transport them thither. So he looked for a team that could haul whole counties of forests so many miles. He saw that the sun drew the greatest loads, and he asked it to help him. And the sun said that was what he was made for; he existed only to help man. He said that he had made those great forests to grow for a thousand years so as to be ready for man when he needed them, and that he was now ready to help move them where they were wanted.

    So he told the man who owned the forest that there was a great power, which men called gravitation, that seemed to reside in the center of the earth and every other world, but that it worked everywhere. It held the stones down to the earth, made the rain fall, and water to run down hill; and if the man would arrange a road, so that gravitation and the sun could work together, the forest would soon be transported from the mountains to the sea.

    So the man made a trough a great many miles long, the two sides coming together like a great letter V. Then the sun brought water from the sea and kept the trough nearly full year after year. The man put into it the lumber and logs from the great forests, and gravitation pulled the lumber and water ever so swiftly, night and day, miles away to the sea.

    How I have laughed as I have seen that perpetual stream of lumber and timber pour out so far from where the sun grew them for man. For the sun never ceased to supply the water, and gravitation never ceased to pull.

    This man who relentlessly cut down the great forests never said, "How good the sun is!" nor, "How strong is gravitation!" but said continually, "How smart I am!"



    05 July 2008 @ 10:28 PM

    // #2. The Man who Needed 452,696 Barrels of Water

    A man once had a large field of wheat. He had toiled hard to clear the land, plow the soil, and sow the seed. The crop grew beautifully and was his joy by day and by night. But when it was just ready to head out it suddenly stopped growing for want of moisture. It looked as if all his hard work would be in vain. The poor farmer thought of his wife and children, who were likely to starve in the coming winter. He shed many tears, but they could not moisten one little stalk.

    Suddenly he said, "I will water it myself." The field was a mile square, and it needed an inch of water over it all. He quickly figured out that there were 27,878,400 square feet in a square mile. On every twelve square feet a cubic foot of water was needed. A cubic foot of water weighs sixty-two and a third pounds. Hence it would require 74,754 tons of water. To draw this amount 74,754 teams, each drawing a ton, would be required. But they would tramp the wheat all down. Besides, the nearest water in sufficient quantity was the ocean, one thousand miles away over the mountains. It would take three months to make the journey. And, worse than all else, the water of the ocean is so salt that it would ruin the crop.


    [Illustration: Breaking Waves.]

    Alas! There were three impossibilities (so many teams, so many miles, so long time - and two ruins if he could overcome the impossibilities) trampling down the wheat and bringing so much salt. Alas, alas! What could he do but see the poor wheat die of thirst and his poor wife and children die of hunger?

    Suddenly he determined to ask the sun to help him. And the sun said he would. That was a very little thing for such a great body to do. So he heated the air over the ocean till it became so thirsty that it drank plenty of water, choosing only the sweet fresh water and leaving all the salt in the ocean. Then the warm air rose, because the heat had expanded it and made it lighter, and the other air rushed down the mountains all over that side of the continent to take its place. Then the warm air went landward in an upper current and carried its load of water in great piles and mountains of clouds; it lifted them over the great ranges of mountains and rained down its thousands of tons of sweet water a thousand miles from the sea, so gently that not a stalk of wheat was trampled down, nor was a single root made acrid by any taste of brine.

    Besides the precious drink the sun brought the most delicate food for the wheat. There was carbonic acid, that makes soda water so delicious, besides oxygen, that is so stimulating, nitrogen, ammonia, and half a dozen other things that are so nutritious to growing plants.

    Thus the wheat grew up in beauty, headed out abundantly, and matured perfectly. Then the farmer stopped weeping for laughter, and in his joy he remembered to thank, not the sun, nor the wind, but the great One who made them both.



    04 July 2008 @ 10:06 PM

    // #1. Why Written

    Fairies, fays, genii, sprites, etc., were once supposed to be helpful to some favored men. The stories about these imaginary beings have always had a fascinating interest. The most famous of these stories were told at Bagdad in the eleventh century, and were called The Arabian Night's Entertainment. Then men were said to use all sorts of obedient powers, sorceries, tricks, and genii to aid them in getting wealth, fame, and beautiful brides.

    But I find the realities of to-day far greater, more useful and interesting, than the imaginations of the past. The powers at work about us are far more kindly and powerful than the Slave of the Ring or the Lamp.

    The object of writing this series of papers about applications of powers to the service of man, their designed king, is manifold. I desire all my readers to see what marvelous provision the Father has made for His children in this their nursery and schoolhouse. He has always been trying to crowd on men more helps and blessings than they were willing to take. From the first mist that went up from the Garden the power of steam has been in every drop of water. Yet men carried their burdens. Since the first storm the swiftness and power of lightning have been trying to startle man into seeing that in it were speed and force to carry his thought and himself. But man still plodded and groaned under loads that might have been lifted by physical forces. I have seen in many lands men bringing to their houses water from the hills in heavy stone jars. Gravitation was meant to do that work, and to make it leap and laugh with pearly spray in every woman's kitchen. The good Father has offered His all-power occasions to all men.

    I desire that the works of God should keep their designed relation to thought. He says, Consider the lilies; look into the heavens; number the stars; go to the ant; be wise; ask the beasts, the fowl, the fishes; or "talk even to the earth, and it showeth thee."

    Every flower and star, rainbow and insect, was meant to be so provocative of thought that any man who never saw a human book might be largely educated. And every one of these thoughts is related to man's best prosperity of joy. He is a most regal king if he achieves the designed dominion over a thousand powerful servitors.

    It is well to see that God's present actual powers in full play about us are vastly beyond all dreams of Arabian imagination. It leads us to expect greater things of Him hereafter. That human imagination could so dream is proof of the greatness of its Creator. But that He has actually surpassed those dreams is prophecy of more greatness to come.

    I desire that my readers of this generation shall be the great thinkers and inventors of the next. There are amazing powers just waiting to be revealed. Draw aside the curtain. We have not yet learned the A B C of science. We have not yet grasped the scepters of provided dominion. Those who are most in the image and likeness of the Cause of these forces are most likely to do it.



    03 July 2008 @ 9:29 PM

    // Among the Forces (by Henry White Warren)

    As I was fighting a losing battle against understanding Katagana in its full tyranny (seriously, can't Japanese stick to naming characters after their own language?!), I stumbled across a fantastic eBook analysing in abstract detail the forces of this world; how physical and spiritual powers give light to a whole new understanding of 'God's creation'. It's a brilliant piece of work, and I shall dedicate this entire month to posting a different chapter every single day (no prizes for guessing who'll win the award for Most Updated Blog of the Month).

    Anyway, you may not understand it as of now (I myself am hoping for discernment in due course of posting what I've skimmed through in the past hour), but I really really REALLY pray that by the end of this month, after the very last chapter, we'll come to comprehend and appreciate the things that are common, unseen, but very very important.


    [Frontispiece: Old Faithful Gesyer.]
    "You made him ruler over the works of your hands; you put everything under his feet: all flocks and herds, and the beasts of the field, the birds of the air, and the fish of the sea, all that swim the paths of the seas."

    - Psalm 8:6-8

    See you guys tomorrow. Same time, same place.



    02 July 2008 @ 11:56 PM

    // We have the facts and we're voting Yes!

    You think you know the world you are living in. If you can feel it, and touch it, and smell it, and taste it, then it must be so. You tell yourself that you would bet your life on the simple fact that the sky is blue. And then one day someone comes along and informs you emphatically that you're wrong. Blue, you insist. Blue as the ocean. Blue as a whale. Blue as my daughter's eyes. But that person shakes his head, and everyone else backs him up. You poor girl, they say. All of those things - the ocean, the whale, her eyes - they're green. You've gotten them mixed up. You've had it wrong all along.

    Isn't it strange how perception affects our basis of knowledge? Imagine you're colour-deficient and can't differentiate between blue and green. So as a kid even though you've been taught that the sky is blue, you pick up a green crayon to draw a cloudless sky. And your best friend sitting beside you tells you that you're wrong.

    What if one day we all realise that there's no such thing as God? What if there is really no Heaven and Hell, and the Bible was just written by a bunch of really idealistic people? What if the thing we believe in wasn't true in the first place?

    Scary stuff.

    But you know something else that doesn't start with 'what if'?

    In this world, it doesn't matter whether it's true or not. What matters is only if it will be believed or it won't be believed. Say some TOK idiot convinces everybody that there's really no such thing as God. That whatever Christians have believed in is non-existent. That our faith has been wasted on something useless. Hogwash. Bollocks. Poppycock.

    Would I stop believing in something I found so real in my life? Would I regret how I might've lived in a lie all this while? Would I start looking for some truth the world approves of?

    Or would I continue to trust in the One who showed me light through the darkness, follow the One who makes my paths straight, and love the One who first loved me?

    You don't believe in something because it's the truth. It becomes the truth because you believe in it. The day when people stop believing in something, that something disappears from the world. But if at least one person believes it on Earth, it exists.

    And since no one really knows the truth anyway, then just choose what you want to believe in. With all your heart, and with all your soul, and with all your mind, and with all your strength. :)